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Vanadium oxides are employed as efficient oxidation cata-
lysts in various processes such as the oxidative dehydrogen-
ation of propane and the formation of maleic anhydride from
butane.[1] Nevertheless, mechanistic details of the surface
reactions, in particular of the initial C�H activation remain to
be elucidated. To obtain more information about intrinsic
structure–reactivity correlations of vanadium oxides, a
number of vanadium oxide ions have been studied in the
gas phase both theoretically[2–4] and experimentally.[5–13] Here,
we report experimental results on the oxidation of propane
and 1-butene by mass-selected [V3O7]

+, corroborated by
quantum chemical calculations using density functional
theory (DFT). The cation [V3O7]

+ was chosen because it
represents the smallest polynuclear V/O cluster cation con-
taining only formal VV.[2b,3c] In addition to propane, 1-butene
was selected as a representative of a small hydrocarbon that
binds more strongly with [V3O7]

+. In general, oxidative
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dehydrogenation (ODH) of hydro-
carbons involves reduction of the
metal center ([V3O7]

+ + 2H+ +

2e�! [V3O7H2]
+). This is brought

about by transfer of two hydrogen
atoms (or equivalently, two pro-
tons and two electrons), thus
resulting in the dehydrogenation
of propane to give propene
(C3H8!C3H6 + 2H) and of 1-
butene to butadiene (C4H8!C4H6

+ 2H). In a mass spectrometric
experiment, two alternative prod-
uct channels could indicate ODH.
Either propene and butadiene are
lost as neutrals concomitant with
two hydrogen atoms being trans-
ferred to [V3O7]

+ to form
[V3O7H2]

+, or neutral water may
be eliminated while the dehydro-
genated hydrocarbon remains
bound at the metal oxide cation
to yield [V3O6(C3H6)]

+ and [V3O6-
(C4H6)]

+, respectively.
The experimental investigation of the [V3O7]

+/hydro-
carbon systems uses a quadrupole-based mass spectrometer
equipped with an electrospray-ionization source.[14] Ion–
molecule reactions (IMRs) of mass-selected [V3O7]

+ with
propane formally result in molecular addition of the hydro-
carbon to the vanadium oxide ion to form [V3O7(C3H8)]

+

(Figure 1a) and yields no products indicative for an ODH
process. In contrast, oxidative dehydrogenation to yield
[V3O7H2]

+ concomitant with formation of neutral butadiene
is indeed observed in the reaction of mass-selected [V3O7]

+

with 1-butene (Figure 1b, Table 1). In addition, four minor

product channels are associated with C�C bond cleavage to
lead to the corresponding [V3O7(C2H4)]

+ cation with parallel
elimination of ethene, mere association to form [V3O7-
(C4H8)]

+, and electron as well as hydride transfers to yield
purely organic cations and neutral vanadium species.[14] For
the oxidative dehydrogenation of 1-butene, labeling experi-
ments demonstrate that the two hydrogen atoms transferred
to [V3O7]

+ originate specifically from the C3 and C4 positions
of 1-butene. We note in passing that the product ion
[V3O7H2]

+ displays a dihydroxide structure rather than that
of a water complex, that is, [V3O5(OH)2]

+ rather than
[V3O6(OH2)].

To understand why ODH is not observed when [V3O7]
+

reacts with propane, but occurs for 1-butene, we apply density
functional theory (DFT). Calculations show that the reac-
tivity difference can be traced back to the initial C�H
activation step. It is not the aim of this communication to
discuss the entire mechanism, which forms the subject of a
separate computational full paper.[15]

The reaction of propane with [V3O7]
+ starts with forma-

tion of the remarkably stable (�107 kJmol�1) ion–molecule
complex 1 (Scheme 1, Figure 2). The secondary carbon atom
of propane attaches to a vanadium site, and the [V3O7]

+

structure deforms such that one oxygen atom of the cluster
changes its coordination from three- to twofold. The next step
corresponds to a formal [2+2] addition of a secondary C�H
bond onto the V=O unit yielding intermediate 2
(�166 kJmol�1). These steps involve only closed-shell singlet
species. The transition structure TS1/2 lies 13 kJmol�1 above
the separated reactants. In the reaction of ethane and propane
with the formal VV compound [VO2]

+, addition of C�H bonds
across a V=O unit has also been identified as an initial step,
although in these systems the transition structures are below
the respective entrance channels because [VO2]

+ binds
alkanes more strongly.[12b,13a] In a thermal gas-phase reaction,
TS1/2 constitutes a bottleneck because dissociation of the

Figure 1. IMRs of [V3O7]
+ with a) propane and b) 1-butene. p(hydro-

carbon)=2.5G10�4 mbar. The signal denoted with an asterisk in
Figure 1a is due to residual gases present in the hexapole.

Table 1: Experimentally observed, normalized intensities and relative reaction rates for various ion–
molecule reactions relevant in the present context.

Reactants Products[a] krel

[V3O7]
+ + C3H8 ! [V3O7(C3H8)]

+ (100) 0.03

[V3O6]
+ + n-C3H7OH ! [V3O7H2]

+ + C3H6 (75) 1.00[b,c]

[V3O6(C3H7OH)]
+ (25)

[V3O6]
+ + i-CH3C(OH)HCH3 ! [V3O7H2]

+ + C3H6 (82) 0.63
[V3O6(C3H7OH)]

+ (18)

[V3O7H2]
+ + C3H6 ! [V3O7H2(C3H6)]

+ (100) 0.24

[V3O7]
+ + C4H8 ! [V3O7H2]

+ + C4H6 (64)
[d] 0.24

[V3O7(C2H4)]
+ + C2H4 (8)

[V3O7(C4H8)]
+ (7)

[C4H8]
+ + [V3O7] (4)

[C4H7]
+ + [V3O7H] (17)

[a] Branching ratios in brackets. [b] Relative rates normalized to this reaction. [c] The reaction of bare Pt+

with CH4 was used as a reference to convert the relative rate constant (krel) into absolute values, which
leads for the reaction of [V3O6]

+ with C3H7OH to kr= (1.3�0.2)G10�9 cm3s�1.[18] The collision rate
constant amounts to 1.4G10�9 cm3s�1.[19] [d] The primary ionic products rapidly add butene to yield
[V3O7H2(C4H8)]

+; see Figure 1b.
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reactant complex 1 (DG298=�63 kJmol�1) into the reactants
(DG298= 0 kJmol

�1) is entropically favored compared to
passage via TS1/2 (DG298= 59 kJmol

�1; see the Supporting
Information).

Another conceivable mechanism commences by abstrac-
tion of a hydrogen atom from a secondary C�H bond by a V=
O unit of [V3O7]

+. This requires decoupling of the electron
pair in the C�Hbond and proceeds via a biradicaloid TS1/3 to
give the radical pair [V3O7H

+C·C3H7C] (structure 3 in
Scheme 1). With the exception of an elongated V�C bond
(249 instead of 200 pm), structure 3 is similar to 2. The
existence of two minima along the V�C bond coordinate can

be attributed to an avoided crossing of the
potential energy surface (PES) for the dissoci-
ation of the C�V s bond into two s radicals, C�
V!CC + CV, and that for formation of the
[V3O7H

+C·C3H7C] pair from the separated rad-
icals with the single electron on [V3O7H]

+C
occupying a stable d orbital instead of a s

hybrid orbital, thus creating a VIV(d1) site.
On the singlet PES, the energy barrier for

this step is computed to be in the range of�5 to
6 kJmol�1 relative to the entrance channel.
The Gibbs free energy barrier amounts to a
range of 33 to 44 kJmol�1; this also implies that
back dissociation of 1 into the reactants is
favored over crossing TS1/3. Whereas the
triplet analogue of intermediate 3 has a lower
energy (triplets are indicated by a superscript
t), in the region of TS1/3 the triplet surface is
located ca. 50 kJmol�1 above the singlet PES.
Hence, we expect the minimum-energy cross-
ing point from the singlet to the triplet surface
to be located between TS1/3 and 3, but we did
not calculate it explicitly.[16]

Starting from the triplet biradical t3 a low-
energy intermediate t4 (Figure 3) is reached in
a complex, but energetically facile rearrange-
ment. Again, complete details will be given
elsewhere.[15] Here, it may suffice to note that
the highest point between t3 and t4 is
90 kJmol�1 below the entrance channel of
separated [V3O7]

+ + C3H8.
In conclusion and in agreement with the

experimental observations, neither of the two
pathways of initial C�H activation allow the
system to cross the barrier. The DFT calcu-
lations further suggest that the observed
formal [V3O7(C3H8)]

+ adduct does indeed
correspond to the association complex 1 and
does not contain new subunits, such as a
propene ligand together with two OH groups.

For the reactions of 1-butene with [V3O7]
+

(Figure 1b), DFT calculations for the closed-
shell singlet state predict the reaction to be
more exothermic than for propane (�174[15] vs.
�158 kJmol�1) and also predict formation of a
substantially much stronger association com-
plex with [V3O7]

+ (6, Scheme 1, Figure 4). The
intrinsic barrier for the [2+2] addition to the V=Obond is also
lower for the allylic C�H bond in 1-butene (TS6/7, Scheme 1)
than for the secondary C�H bond of propane (91 vs.

Scheme 1. Reaction intermediates and transition structures in the oxidative dehydrogen-
ation of propane and of 1-butene by [V3O7]

+. Selected distances are given in pm, and
triplets are indicated by a superscript t. <S2> : spin operator value (see the
Experimental Section and the Supporting Information).

Figure 2. a) Relative energies (EZP at 0 K) for the reaction pathways for oxidative
dehydrogenation of propane by [V3O7]

+. The transition from t3 to t4 involves a complex
rearrangement over several steps which will be described elsewhere.[15] b) Free energies
(DG298) for the initial C�H activation steps. Triplets are indicated by a superscript t.

Figure 3. Structures of intermediates t4 and t5.
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120 kJmol�1). As a result, TS6/7 is so much below the
entrance channel of [V3O7]

+ + 1-butene (Figure 4) that this
energy difference is not compensated for by the entropy gain
for the back decomposition into reactants as seen from a
strongly negative DG298=�56 kJmol�1. This computational
result is in perfect agreement with the experimentally
observed efficient ODH of 1-butene by [V3O7]

+ (Table 1).
For completeness we note that the open-shell transition
structure for hydrogen abstraction, TS6/8, is higher in energy
than TS6/7, but is also still significantly below the entrance
channel (Figure 4).

In order to further test the DFT-based predictions
experimentally, the potential energy surface of the [V3O7]

+/
propane system has also been approached from the product
side. Thus, exclusive formation of [V3O7H2]

+ concomitant
with neutral propene is observed in the reactions of [V3O6]

+

with 1- and 2-propanol (Table 1). The slightly enhanced
reactivity of 1-propanol is consistent with linear alcohols
being less sterically hindered than branched alcohols. The
complementary process, that is, addition of the propene
ligand to [V3O6]

+ concomitant with loss of neutral water, is
not observed with either of the isomeric alcohols. This result
can be attributed to the fact that an electron-deficient species
such as a high-valent metal oxide cation prefers coordination
with water as a better s-donor ligand rather than with a
typical p ligand such as an alkene.[17] Furthermore, the
reaction of mass-selected [V3O7H2]

+ with propene leads to
mere molecular addition of the olefin. These results fully
support the computational predictions, in that the reaction of
[V3O6]

+ and propanol can smoothly proceed from the
entrance channel to the products [V3O7H2]

+ and propene,
while deoxygenation of the alcohol to yield [V3O7]

+ + C3H8

via the entropically disfavored TS1/2 (DG298= 59 kJmol
�1) is

unable to compete (Figure 2).
In summary, although the ODH reaction of propane by

[V3O7]
+ is exothermic, this vanadium oxide cation is not

capable of dehydrogenating propane because of the presence
of a significant barrier associated with the initial C�H
activation. In marked contrast, 1-butene reacts with [V3O7]

+

at thermal energies. These experimental results perfectly
agree with the DFT calculations, which predict C�H activa-
tion as the rate-determining step. The differences between
propane and 1-butene canmostly be traced back to the energy
gained upon initial coordination of the hydrocarbon by the
vanadium oxide cation and the more facile activation of an
allylic C�H bond.

Experimental Section
The experiments were carried out using a tandem mass spectrometer
with QHQ configuration (Q: quadrupole, H: hexapole) equipped
with an electrospray-ionization (ESI) source as described else-
where.[20] Briefly, [VmOn]

+ clusters of interest were generated by
ESI of V6O7(OCH3)12 dissolved in CD3OD,

[21,22] mass-selected using
Q1, allowed to interact with propane or 1-butene, at pressures on the
order of 10�4 mbar, which approximately corresponds to single-
collision conditions, and the ionic products were then mass-analyzed
using Q2. Ion-reactivity studies were performed at an interaction
energy in the hexapole (Elab) nominally set to 0 eV. The reaction
products formed rapidly decline at elevated collision energies,
thereby justifying the assumption that these processes occur at
quasi-thermal energies.[14]

The calculations were performed using the hybrid density func-
tional B3LYP[23] with triple-z plus polarization basis sets (TZVP)[24]

employing Turbomole 5.7.[25] B3LYP was shown previously to de-
scribe [VmOn] clusters in good agreement with available experimental
data as well as quantum chemical methods that explicitly include
electron correlation.[3c] The unrestricted Kohn–Sham scheme was
used to deal with triplet spin states. For open-shell singlets, broken-
symmetry calculations were performed,[26] and the low-spin energy
was obtained from the triplet and broken-symmetry energies by spin
projection.[27] When the expectation value of S2 significantly deviated
from one (indicating an increasing overlap between the unpaired
electrons), as was the case for TS1/3, spin-projection was ques-
tioned[28] and both energies were then taken as limiting estimates, as
indicated by the gryy-shaded boxes in Figures 2 and 4. All inter-
mediates and transition structures were characterized by frequency
analysis, and the energies include corrections for zero-point vibra-
tions. Energies, entropies, and Gibbs free energies at room temper-
ature can be found in the Supporting Information.
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