Struktur und Reaktivität von Vanadia/Silica Modell Katalysatoren

Structure and Reactivity of Vanadia/Silica Model Catalysts

<u>D Löffler</u>, J Uhlrich, M Baron, S Shaikhutdinov & HJ Freund Abteilung Chemische Physik Fritz-Haber-Institut der Max-Planck Gesellschaft Faradayweg 4-6, Berlin 14195

reactivity of VO_x particles in chemical reactions

(e.g. ODH) is strongly dependent on the <u>support</u>

 VO_x on CeO_2

STM: formation of monomers, dimers, trimers or oligomers as function of coverage and temperature

IRAS: direct relationship between the nuclearity of vanadia clusters and the V=O frequency

I. Wachs, Catal. Today, 100 (2005), 79.

monomers \rightarrow dimers (trimers) \rightarrow nanoparticles

Baron et al., Angew. Chem. 2009, 121, 8150

15.02.2010

objectives

objectives

reactivity of VO_x particles in chemical reactions (e.g. ODH) is strongly dependent on the support

 VO_x on CeO_2

STM: formation of monomers, dimers, trimers or oligomers as function of coverage and temperature

IRAS: direct relationship between the nuclearity of vanadia clusters and the V=O frequency

XPS: V in +5 state

TPD: low-temperature reactivity of small VO_x particles

I. Wachs, Catal. Today, 100 (2005), 79.

research goals

<u>monolayer</u> crystalline SiO₂/Mo(112)

➢ SiO₂ phonon (~1060 cm⁻¹) interferes/ couples with V=O stretch frequency (1010-1050 cm⁻¹)

 \succ only ML \rightarrow interaction to metal underneath

> thicker SiO_2 /Mo(112) films are amorphous

Research Goals:

- 1) synthesis and characterization of SiO₂ substrate (Ru(0001))
- 2) characterize VO_x model catalyst
- 3) relate the structure of VO_x/SiO_2 to

Daniel Löffler

15.02.2010

preparation of SiO₂ on Ru(0001)

1. step: PVD of Si in O₂ ambient (~ $2^{10^{-7}}$ mbar) at 633 K on O precovered Ru(0001)

2. step: O_2 at 1025 K in font of doser (\rightarrow high local O_2 pressure, > 10⁻⁵ mbar)

SFB "Übergangsmetalloxidaggregate"

 $E_B (SiO_2/Ru) = 531.7 \text{ eV} \text{ and } 529.8 \text{ eV} \text{ (ratio } \sim 12.1)$ $E_B (O p(2x1)/Ru) = 529.8 \text{ eV}$

decreasing of low binding state at grazing emission

- \rightarrow not on surface
- \rightarrow on SiO₂/Ru interface

2 sharp phonons (FWHM 12 cm⁻¹) high structural order of SiO_2 film no interference with V=O

$$\frac{\nu_1({}^{18}\text{O})}{\nu_1({}^{16}\text{O})} = \frac{\nu_2({}^{18}\text{O})}{\nu_2({}^{16}\text{O})} = 0,957 \sim \sqrt{\frac{\mu(\text{Si}-{}^{16}\text{O}-\text{Si})}{\mu(\text{Si}-{}^{18}\text{O}-\text{Si})}}$$

hydroxylation with $D_2O(s) \rightarrow v$ (OD)

Daniel Löffler

15.02.2010

estimation of SiO₂/Ru film thickness

2.5 x monolayer intensity on Mo(112) (~ 3 Å) ➤ calibration on Si 2p XPS intensity

~ 2.5 x ML

attenuation of Ru 3d signal
(IEMFP from S. Tanuma, Surf. Int. Anal., 29,165,1993)
5 - 10 Å
attenuation of O 1s signal O prec. Ru
- 5 Å
attenuation of Ru 3d signal at grazing emission
~ 10 Å

→ \geq 2 layers of SiO₂ on Ru(0001)

STM

STM reveals relatively uniform and flat SiO_2 film on Ru(0001)

curved step edges and long stripes

destruction during scanning ($U_T > 4V$)

- \rightarrow weak interaction between SiO_2 layers/substrate
- no atomic resolution yet

Key observations:

- LEED: p(2x2) Ru, crystalline
- XPS: Si: only Si (4+); O: SiO₂ and Ru-O state, thickness \geq 2ML
- IRAS: 1300 cm⁻¹, 690 cm⁻¹, sharp
- STM: flat terraces, weak interaction between SiO₂ layers (and/or) Ru substrate

B. Vanadia on SiO₂/Ru(0001)

preparation: PVD of V in O_2 ambient (~10⁻⁶ mbar) at T_s ~100 K

→ $E_B(V 2p^{3/2})$ at ~ 517 eV → V in oxidation state +5

 E_B shifts from 517,3 eV to 516,7 eV

- \rightarrow similar to VO_x on CeO₂
- \rightarrow aggregation of V clusters

 \leftrightarrow VO_x on monolayer SiO₂/Mo(112) significant lower E_B (\rightarrow V in +3/+4)

IRAS

vanadyl (V=O) stretching vibration shifts from 1008 cm⁻¹ to 1038 cm⁻¹ \rightarrow coalescence of VO_x monomers to polymeric VO_x \rightarrow dipole coupling between neighboring V=O groups

comparable behavior to vanadia on \mbox{CeO}_2

Baron et al., Angew. Chem. 2009, 121, 8150

thermal stability of VO_x/SiO₂ in UHV

E_B = 515 eV

unusual high E_B (518.3 eV) for V 2p peak

small particles (final state effects)
 V (5+) in special environment

518.3 eV state increases in intensity at grazing emission

> V with E_B = 518.3 eV is surface species (= on top of VO_x or vanadia silicate

thermal stability

thermal stability of VO_X on SiO_2 : V=O stretching vibration

shift of v_1 from 1020 cm⁻¹ to 1048 cm⁻¹

coalescence of small VO_x
 clusters to polymeric
 vanadyls

800 K onset of peak ν_2 at 1026 cm^{-1} , shift of ν_2 to 1022 cm^{-1} (1000 K)

> formation of new VO_X/SiO_2 phase (E_b 518.3 eV)

> new peak at 1058 cm⁻¹ → v(C-O) str. from CH_3O -/ CH_3OH

> 1030 cm⁻¹ strongly reduced \rightarrow interaction between these (oligomeric) V=O and CH₃OH

➢ polymeric V=O (1041 cm⁻¹) inactive

> XPS: no changes, V remains in +5 state (\leftrightarrow VO_x on Ceria V +3)

Summary

- preparation of "thick" ordered silica film on Ru(0001)
 - bi-layer ("sandwich") model
- structural studies of Vanadia/SiO₂ species
 - monomeric -> oligomeric (polymeric) V=O species
 - formation of V=O terminated mixed oxide phase at HT

Outlook

- atomic structure of silica film (+ DFT)
- morphology of VO_x on silica (LT STM, AFM)
- structure of "mixed" oxide phase (vanadia silicate?)
- reactivity of VO_x/SiO₂ systems towards CH₃OH as compared to VO_x/CeO₂ (TPD)

Thank you for your attention! Question and/or comments?

<u>The Masterminds</u> Prof. Hans-Joachim Freund Dr. Shamil Shaikhutdinov

The WorkforceDr. John UhlrichMartin BaronDr. Helmut KuhlenbeckElena PrimoracOsman Karslioglu

Daniel Löffler

15.02.2010

complementary techniques in same UHV system

additional measurements at BESSY II

 \rightarrow better resolution and more surface sensitive XPS + NEXAFS

Daniel Löffler

15.02.2010

A. preparation of SiO₂ on Ru(0001)

I. Step: PVD of Si in O₂ ambient (~2*10⁻⁷ mbar) at 633 K on O precovered Ru(0001)

IRAS & LEED

Stacchiola et al., App. Phy. Lett. 92, 011911(2008)

no LEED pattern

- ➢ film not crystalline
- \geq amorphes SiO_x

Daniel Löffler

15.02.2010

Daniel Löffler

15.02.2010

W:\IRData\2010\ian10\012602.0	Ru(0001)	sample form	26/01/2010
W:\IRData\2010\ian10\012603.0	Ru(0001)	sample form	26/01/2010
W:\IRData\2010\ian10\012604.0	Ru(0001)	sample form	26/01/2010
W:\IRData\2010\ian10\012606.0	Ru(0001)	sample form	26/01/2010
W:\IRData\2010\ian10\012609.0	Ru(0001)	sample form	26/01/2010

Page 1/1

Daniel Löffler

Monomeric VO_x

