# Preparation of ordered Mo+Ti and V+Ti mixed oxide layers on TiO<sub>2</sub>(110) using a W+Ti oxide diffusion blocking layer

E. Primorac, O. Karslioglu, M. Naschitzki, H. Kuhlenbeck, H.-J. Freund.

**D. Löffler, J. Uhlrich helped at BESSY** 

Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany

- Supported catalyst with part of the active component in the support.
- Mixed oxide with phase separation.



- Chemical activity of the mixed phase?
- What phases are to be expected?
- How are the atoms of the active component embedded into the substrate lattice?
- How does the matrix modify the chemical properties of the embedded atoms?
- Oxidation states?
- Equilibrium between surface and bulk component?
- Influence of gases (oxygen!)?
- How to prepare?



## **Preparation strategies**

- Deposition of metal onto support followed by annealing.
- Direct preparation of a mixed oxide.

Interested in the properties of the mixed phase  $\rightarrow$  direct preparation.

- > Better control of composition.
- Co-deposition of two metals in an oxygen atmosphere.
- Concentration of the mixed-in metal: not too high.
- Systems: TiO<sub>2</sub> mixed with Mo and V.



 $MoO_2$  and  $VO_2$  both exhibit rutile structure: good mixing with TiO<sub>2</sub>. Other oxidation states have a tendency for phase separation.



Lattice parameter for different rutile-type oxides

| oxide            | а    | С    |
|------------------|------|------|
| CrO <sub>2</sub> | 4.41 | 2.91 |
| $Mo\bar{O_2}$    | 4.86 | 2.79 |
| $RuO_2^-$        | 4.51 | 3.11 |
| $SnO_2^-$        | 4.74 | 3.19 |
| TiO <sub>2</sub> | 4.59 | 2.96 |
| $VO_2^-$         | 4.55 | 2.85 |
| WO <sub>2</sub>  | 4.86 | 2.77 |



TiO<sub>2</sub> preparation investigated on several Au and Pt surfaces. Thin layers: strange structures; thicker layers: dewetting, faceting, one-dimensional disorder. Probable problem: lattice mismatch



```
Preparation strategy -2-
```

To improve lattice match: use TiO<sub>2</sub>(110) substrate

High-quality TiO<sub>2</sub>(110) layers

Stable layers of Mo in TiO<sub>2</sub>(110).

**Problem: vanadium diffuses into the bulk.** 

Prepare a diffusion blocking layer: (Ti+W)O<sub>x</sub>

Good quality of  $TiO_2(110)$  on the blocking layer





## Short summary - the systems are:

 $Mo_X Ti_Y O_Z$  layer

 $TiO_2(110)$  substrate

 $V_X Ti_Y O_Z$  layer

 $W_X Ti_Y O_Z$  blocking layer

 $TiO_2(110)$  substrate







# Protrusions on the surface are probably due to $MoO_3$ .



Mo/(Mo+Ti) = 2%

Mo/(Mo+Ti ) = 38%

#### LEED pattern resembles TiO<sub>2</sub>(110) pattern.

# Short summary - Mo<sub>X</sub>Ti<sub>Y</sub>O<sub>X</sub>



# Short summary - Mo<sub>X</sub>Ti<sub>Y</sub>O<sub>X</sub>



# Short summary - Mo<sub>X</sub>Ti<sub>Y</sub>O<sub>X</sub>









### Methanol adsorption (TDS)

- Damping of the ~270K peak with increased Mo content.
- Large part of the signal due to  $TiO_2(110)$ .
- Electron irradiated surface gives a formaldehyde peak.

Henderson et al., *Surf. Sci.*, 1998, 412/413, pp 252–272

### Thermal stability of the V+Ti mixed oxide layer

#### $V_X Ti_Y O_Z | TiO_2(110) | WO_X | TiO_2(110)$



## Thermal stability of the V+Ti mixed oxide layer



### $V_X Ti_Y O_X$ on the blocking layer



V<sup>3+</sup> and V<sup>4+</sup> below.

#### Does the blocking layer block defect diffusion?



## Thermal stability of the W+Ti oxide layer



### Tungsten oxide on TiO<sub>2</sub>(110)





C(4x1) structure, 6.8 Å lattice constant

LEED simulation with LEEDpat 2.1, K. Hermann and M. A. van Hove

### Thermal stability of the W+Ti oxide layer -2-



## Summary

- Preparation of  $TiO_2(110)$  layers on Au and Pt substrates was not successful.
- TiO<sub>2</sub>(110) and mixed oxide layers [V, Mo in TiO<sub>2</sub>(110)] can be prepared and stabilized on TiO<sub>2</sub>(110).
- Tungsten oxide diffusion blocking layer can hinder V and defect diffusion.
  - Blocking layer not fully stable.
- Tendency for Mo, V, and W mixed with TiO<sub>2</sub>(110): oxygen treatment pulls out higher oxidation states [ phase separation ].
- More stable when annealed in vacuum.

#### **Current effort**

• Check whether lead [ larger ionic diameter ] can be used for the blocking layer.

#### Future

• Methanol adsorption.