Recent activities in TP C6: Adsorption, diffusion, and reaction at MoO$_3$ and V$_2$O$_5$ substrate

K. Hermann, M. Gruber, and X. Shi

Theory Department, Fritz-Haber-Institut, Berlin
TP C6 Introduction

- **Personnel**
 - Matteo Cavalleri (Postdoc), NEXAFS
 → Wiley (phys. stat. solidi), since March 2009
 - Xuerong Shi (PhD student), adsorption, reactions
 → Key State Lab. of Coal Conversion, Taiyuan (PR China),
 since Jan. 2010
 - Mathis Gruber (IMPRS PhD student), adsorption, reaction,
 NEXAFS (learning), until 2011
 - Murat Mesta (PhD student), NEXAFS (starting), relativistic effects,
 until 2013
 - NN (Sfb 546 PostDoc), NEXAFS, searching since Jan. 2010

Any suggestions? Please tell me quickly, time is running!
TP C6 Introduction

- Subjects considered
 - Adsorption, diffusion, substitution, vacancies, spectroscopy
 - Extended substrates: V$_2$O$_5$, MoO$_3$, MoS$_2$, Mo$_2$C
 - Adsorbates: H, NH$_x$, CO, NO, H$_2$O, O, S
 - Small particles: V$_x$O$_y$, Mo$_x$O$_y$, (NEXAFS)

- Publications 2009 -2010
 - Refereed journals: 5 apprd., 1 in print, 1 submt., 1 in prep.
 - Proceedings: 1 apprd.
Specific subjects

• **Discrimination** between $V_x O_y$ particles at **SBA-15** SiO$_2$ using O 1s NEXAFS (collaboration with TP B2)
 - **most recent**: confirmation of theoretical spectra [1], improved resolution in experiment [2]

O 1s NEXAFS for V$_x$O$_y$ / SiO$_2$, Introduction

- **Structure / type of reactive VO$_x$ species at catalyst support, monomeric vs. non-monomeric VO$_x$**

 ![Diagram showing different VO$_x$ configurations](image)

 - **Model system (B2):**
 - small VO$_x$ particles on SBA-15 SiO$_2$ support,
 - determine structural details of VO$_x$

- **Analysis of different oxygen species inside VO$_x$ and at support interface**

- **Discrimination of V=O, V-O-V, V-O-Si, Si-O-Si bonds in NEXAFS spectra**
O 1s NEXAFS for V_xO_y/SiO_2, Theoretical Details

- **Model clusters**
 - from vibrational studies (A4) [1,2]
 - hydrogen termination at periphery
 - clusters $V_{Si_7}O_{13}H_7$, $V_{2Si_6}O_{14}H_6$, ...

- **Electronic structure**
 - DFT, GGA (RPBE) functional, StoBe
 - Slater’s TP method for O 1s excitations
 - atom resolved NEXAFS spectra

O 1s NEXAFS for V_xO_y/SiO_2, Exp. NEXAFS Spectra [1]

- NEXAFS measurements (B2 [1])
 - (a) clean SBA-15
 - (b) SBA-15 + V_xO_y
 (2.7% V weight loading)

Excitation regions
- $V\,2p \rightarrow 3d$
- $O\,1s \rightarrow O\,2p - V\,3d$

- **broad asymmetric oxygen peak at about 528 – 534 eV**

Comparison with experiment [1]
- all \(V_xS_i_yO_zH_w \) clusters considered, total NEXAFS spectra [2]
- higher non-monomers, umbrella type \(V_xO_y \) contribute to peak asymmetry

O 1s NEXAFS for \(V_xO_y/SiO_2 \), Theory vs. Experiment [1, 2]

non-monomeric \(V_xO_y \) must exist at SBA-15 surface

O 1s NEXAFS for V_xO_y/SiO_2, Theory vs. Experiment [1, 2]

- **Comparison with experiment [1]**
 - all $V_xSi_yO_zH_w$ clusters considered, total NEXAFS spectra [2]
 - higher non-monomers, umbrella type V_xO_y contribute to peak asymmetry

- **non-monomeric V_xO_y must exist at SBA-15 surface**

Specific subjects

• \(\text{NH}_x \) (de)hydrogenation at \(\text{V}_2\text{O}_5(010) \)
 - \(\text{NH}_4 \) formation at OH groups (Bronstedt sites), \(\text{NH}_4 \) diffusion
 - \(\text{NH}_x \) binding at oxygen vacancies (Lewis sites)
 - H binding, diffusion,
 - surface OH + OH reaction to form \(\text{H}_2\text{O} + \text{O} \), \(\text{H}_2\text{O} \) desorption

• Selective Catalytic reduction (SCR) of \(\text{NO}_x \) with \(\text{NH}_3 \)
 - reaction schemes with OH groups (Bronstedt sites)
 - reaction schemes near oxygen vacancies (Lewis sites)
NH\textsubscript{x} at V\textsubscript{2}O\textsubscript{5}(010), Introduction

- Use of vanadia based catalysts in **ammoxidation** reactions

 example: selective catalytic reduction (SCR) of NO\textsubscript{x} with NH\textsubscript{3}

 \[
 4 \text{NH}_3 + 4 \text{NO} + \text{O}_2 \rightarrow 4 \text{N}_2 + 6 \text{H}_2\text{O}
 \]

 \[
 4 \text{NH}_3 + 2 \text{NO}_2 + \text{O}_2 \rightarrow 3 \text{N}_2 + 6 \text{H}_2\text{O}
 \]

- **NH\textsubscript{x} reactions** (dehydrogenation, hydrogenation)

 \[
 \text{NH}_x \rightarrow \text{NH}_{x-1} + \text{H}_{\text{ads}}, \quad x = 1 - 3
 \]

 \[
 \text{NH}_x + \text{H}_{\text{ads}} \rightarrow \text{NH}_{x+1}
 \]

- **Adsorption / desorption** of NH\textsubscript{x}, N, H

- **Diffusion** of NH\textsubscript{x}, N, H at surface
Substrate clusters for $V_2O_5(010)$
- 1- / 2-layer sections, start from exp. geometry
- hydrogen termination at periphery (embedding)
- clusters $V_{12}O_{40}H_{20}, V_{14}O_{42}H_{14}, V_{14}O_{46}H_{22}, \ldots$
- adsorbates added (H, NH_x, NO)
- O removed from O(1-3) sites

Electronic structure
- DFT, GGA (RPBE) functional, StoBe
- equilibrium geometries
- transition states, barriers (NEB)
NH\textsubscript{x} at V\textsubscript{2}O\textsubscript{5}(010), Adsorption sites, Energetics

- **Adsorption sites**

- **Adsorption energies** E_{ads} [eV] from total energy differences

<table>
<thead>
<tr>
<th></th>
<th>O(1)</th>
<th>O(2)</th>
<th>O(3)</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-2.64</td>
<td>-2.79</td>
<td>-2.51</td>
<td>--</td>
</tr>
<tr>
<td>N</td>
<td>-1.54</td>
<td>-1.09</td>
<td>-0.49</td>
<td>--</td>
</tr>
<tr>
<td>NH</td>
<td>-0.95</td>
<td>-0.76</td>
<td>-0.06</td>
<td>--</td>
</tr>
<tr>
<td>NH\textsubscript{2}</td>
<td>-0.46</td>
<td>-0.73</td>
<td>-0.16</td>
<td>-0.12</td>
</tr>
<tr>
<td>NH\textsubscript{3}</td>
<td>-0.11</td>
<td>V</td>
<td>-0.18</td>
<td>-0.26</td>
</tr>
<tr>
<td>NH\textsubscript{4}</td>
<td>-3.90</td>
<td>-3.57</td>
<td>-3.27</td>
<td>-3.37</td>
</tr>
</tbody>
</table>

- NH_3 bound quite weakly
- NH_4, H bound quite strongly
NH$_x$ at V$_2$O$_5$(010), Adsorption sites, Energetics

- **Adsorption (vacancy) sites**
 - NH$_3$, NH$_4$

- **Adsorption energies E_{ads} [eV]**
 from total energy differences
 vacancy clusters

<table>
<thead>
<tr>
<th></th>
<th>O(1)$_{vac}$</th>
<th>O(2)$_{vac}$</th>
<th>O(3)$_{vac}$</th>
<th>s-O(1)$_{vac}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-1.40</td>
<td>-2.60</td>
<td>-2.60</td>
<td>-2.10</td>
</tr>
<tr>
<td>N</td>
<td>-2.20</td>
<td>-4.10</td>
<td>-3.80</td>
<td>-2.70</td>
</tr>
<tr>
<td>NH</td>
<td>-3.20</td>
<td>-4.90</td>
<td>-4.60</td>
<td>-3.60</td>
</tr>
<tr>
<td>NH$_2$</td>
<td>-2.20</td>
<td>-3.90</td>
<td>-2.90</td>
<td>-2.80</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>-0.90</td>
<td>s-O(1)$_{vac}$</td>
<td>-0.30</td>
<td>-1.20</td>
</tr>
<tr>
<td>NH$_4$</td>
<td>-3.30</td>
<td>-2.80</td>
<td>-3.30</td>
<td>-2.80</td>
</tr>
</tbody>
</table>

→ Binding *stronger* near O vacancy
→ NH$_3$ bound near sub-surface s-O(1)$_{vac}$
\(V_2O_5(010) \), sub-surface oxygen vacancy

- **Vacancy exchange**

- **Diffusion process**
 - Oxygen: \(s-O(1) \rightarrow O(2) \)
 - O vacancies: \(O(2)_{\text{vac}} \rightarrow s-O(1)_{\text{vac}} \)

 \(s-O(1)_{\text{vac}} \) more stable than \(O(2)_{\text{vac}} \)

 small diffusion barrier, 0.1 eV

 importance for reactions?
NH_x at $V_2O_5(010)$, Hydrogen diffusion

- Reactant **diffusion** at surface important for reaction, example hydrogen
- Diffusion **paths, barriers** from nudged elastic band (NEB) calculations
- H hops between O sites, OH “diffusion”
NH\textsubscript{x} at V\textsubscript{2}O\textsubscript{5}(010), Hydrogen diffusion

- Reactant diffusion at surface important for reaction, example hydrogen
- Diffusion paths, barriers from nudged elastic band (NEB) calculations
- H hops between O sites, OH “diffusion”

![Diagram of diffusion paths and barriers](image)

Low barriers:
- O(1) / O(1): 0.2 / 0.4 eV
- O(2) / O(2): 0.8 eV
NH$_x$ at V$_2$O$_5$(010), Hydrogen diffusion

- Reactant **diffusion** at surface important for reaction, example hydrogen
- Diffusion **paths, barriers** from nudged elastic band (NEB) calculations
- H **hops** between O sites, OH “diffusion”

Mobile oxygen facilitates O-H bond breaking / making
NH\textsubscript{x} at V\textsubscript{2}O\textsubscript{5}(010), Hydrogen reaction

- Hydrogen **diffusion** at surface may lead to adjacent surface OH
- **Reaction** of surface OH: \(V=OH + V=OH \rightarrow V-H_2O + V=O \)
 - Surface H\textsubscript{2}O formed (barrier = 0.3 eV)
- Surface H\textsubscript{2}O **weakly** bound (0.4 eV) \(\rightarrow \) **easy** desorption
 - Oxygen vacancy filled by gas phase O\textsubscript{2}
NH$_x$ at V$_2$O$_5$(010), Hydrogen reaction

- Hydrogen **diffusion** at surface may lead to adjacent surface OH

- **Reaction** of surface OH: $V=OH + V=OH \rightarrow V-H_2O + V=O$

 Surface H$_2$O formed (barrier = 0.3 eV)

- Surface H$_2$O **weakly** bound (0.4 eV) \rightarrow easy desorption

 oxygen vacancy filled by gas phase O$_2$
SCR of NO_x with NH_3 at $\text{V}_2\text{O}_5(010)$

- Use of vanadia based catalysts in **ammonoxidation** reactions

Selective Catalytic Reduction (**SCR**) of NO_x with NH_3

\[
4 \text{NH}_3 + 4 \text{NO} + \text{O}_2 \rightarrow 4 \text{N}_2 + 6 \text{H}_2\text{O}
\]

\[
4 \text{NH}_3 + 2 \text{NO}_2 + \text{O}_2 \rightarrow 3 \text{N}_2 + 6 \text{H}_2\text{O}
\]

- **Reaction** schemes near OH groups (**Bronstedt** sites) [1]

- **Reaction** schemes near oxygen **vacancies** (**Lewis** sites) [1]

- **Initial testing steps, conclusive results** \(\rightarrow\) Schmöckwitz 2011

SCR of NO\textsubscript{x} with NH\textsubscript{3} at V\textsubscript{2}O\textsubscript{5}(010)

\[4 \text{NH}_3 + 2 \text{NO}_2 + \text{O}_2 \rightarrow 3 \text{N}_2 + 6 \text{H}_2\text{O} \]

Scheme 1: NH\textsubscript{3} adsorbs near OH group, NH\textsubscript{4}+ formation [1]

1: \(\text{V}=\text{OH} + \text{NH}_3 + \text{NO} \rightarrow \text{V}=\text{O-NH}_4^+ + \text{NO} \)

2: \(\text{V}=\text{O-NH}_4^+ + \text{NO} \rightarrow \text{V}=\text{O-NH}_4^+\text{-NO} \)

3: \(\text{V}=\text{O-NH}_4^+\text{-NO} \rightarrow \text{V}=\text{OH-NH}_2\text{NOH} \)

4: \(\text{V}=\text{OH-NH}_2\text{NOH} \rightarrow 2 \times \text{V}=\text{OH-NH}_2\text{NO} \)

5: \(2 \times \text{V}=\text{OH-NH}_2\text{NO} \rightarrow \text{V}=\text{OH} + \text{V}=\text{OH} + \text{N}_2 + \text{H}_2\text{O} \)

SCR of NO\textsubscript{x} with NH\textsubscript{3} at V\textsubscript{2}O\textsubscript{5}(010)

\[4 \text{NH}_3 + 2 \text{NO}_2 + \text{O}_2 \rightarrow 3 \text{N}_2 + 6 \text{H}_2\text{O} \]

Scheme 2: NH\textsubscript{3} adsorbs near O(1) vacancy [1]

(= reduced metal center, Lewis site)

1a: V + NH\textsubscript{3} + NO \rightarrow V-NH\textsubscript{3} + NO

2a: V-NH\textsubscript{3} + NO \rightarrow V-NH\textsubscript{3}-NO

3a: V-NH\textsubscript{3}-NO \rightarrow V=O-NH\textsubscript{2}NH

1b: V + NH\textsubscript{3} + NO \rightarrow V-NO + NH\textsubscript{3}

2b: V-NO + NH\textsubscript{3} \rightarrow V-NO-NH\textsubscript{3}

3b: V-NO-NH\textsubscript{3} \rightarrow V=O-NH\textsubscript{2}NH

4: V=O-NH\textsubscript{2}NH \rightarrow V + V=OH + N\textsubscript{2} + H\textsubscript{2}O

Other subjects

• \(\text{MoO}_3(010) \) [1] (MoS$_2$ oxidation)
 - sulfidation vs. sulfur adsorption
 - importance of hydrogen

• Molecular vs. dissociative CO and NO adsorption at \(\text{Mo}_2\text{C}(0001) \) [2]
 - preferred adsorption, sites and energetics

→ Private discussions
