Recent activities in TP C6: Adsorption, diffusion, and reaction at MoO₃ and V₂O₅ substrate

K. Hermann, M. Gruber, and X. Shi

Theory Department, Fritz-Haber-Institut, Berlin

Sfb 546 Workshop, Schmöckwitz, Feb. 16, 2010

TP C6 Introduction

Personnel

- Matteo Cavalleri (Postdoc), NEXAFS
 - → Wiley (phys. stat. solidi), since March 2009
- Xuerong Shi (PhD student), adsorption, reactions
 - → Key State Lab. of Coal Conversion, Taiyuan (PR China), since Jan. 2010
- Mathis Gruber (IMPRS PhD student), adsorption, reaction, NEXAFS (learning), until 2011
- Murat Mesta (PhD student), NEXAFS (starting), relativistic effects, until 2013
- NN (Sfb 546 PostDoc), NEXAFS, searching since Jan. 2010
 Any suggestions? Please tell me quickly, time is running!

TP C6 Introduction

- Subjects considered
 - Adsorption, diffusion, substitution, vacancies, spectroscopy
 - Extended substrates : V₂O₅, MoO₃, MoS₂, Mo₂C
 - Adsorbates : H, NH_x , CO, NO, H_2O , O, S
 - Small particles : V_xO_y, Mo_xO_y, (NEXAFS)
- Publications 2009 -2010
 - Refereed journals : 5 apprd., 1 in print, 1 submt., 1 in prep.
 - Proceedings : 1 apprd.

Specific subjects

- Discrimination between V_xO_y particles at SBA-15 SiO₂ using O 1s NEXAFS (collaboration with TP B2)
 - most recent: confirmation of theoretical spectra [1],

improved resolution in experiment [2]

O 1s NEXAFS for V_xO_y / SiO₂ , Introduction

Structure / type of reactive VO_x species at catalyst support, monomeric vs. non-monomeric VO_x

- Model system (B2) :
 - small VO_x particles on SBA-15 SiO₂ support,
 - determine structural details of VO_x
- Analysis of different oxygen species inside VO_x and at support interface
- Discrimination of V=O, V-O-V, V-O-Si, Si-O-Si bonds in NEXAFS spectra

O 1s NEXAFS for V_xO_y / SiO₂ , Theoretical Details

- Model clusters
 - from vibrational studies (A4) [1,2]
 - hydrogen termination at periphery
 - clusters VSi₇O₁₃H₇, V₂Si₆O₁₄H₆, ...

- Electronic structure
 - DFT, GGA (RPBE) functional, StoBe
 - Slater's TP method for O 1s excitations
 - atom resolved NEXAFS spectra

N. Magg et al., J. Catal. 226, 88 (2004)
 J. Döbler, M. Pritzsche, and J. Sauer, in preparation.

O 1s NEXAFS for V_xO_y / SiO₂, Exp. NEXAFS Spectra [1]

- NEXAFS measurements (B2 [1])
 - (a) clean SBA-15
 - (b) SBA-15 + V_xO_y (2.7% V weight loading)
 - **Excitation regions**
 - V 2p \rightarrow 3d
 - $O 1s \rightarrow O 2p V 3d$

broad asymmetric oxygen peak at about 528 – 534 eV

O 1s NEXAFS for V_xO_y / SiO₂ , Theory vs. Experiment [1, 2]

• non-monomeric V_xO_y must exist at SBA-15 surface

[1] M. Häveckeret al., Phys. Stat. Solidi (b) 246, 1459 (2009).

[2] M. Cavalleri et al., J. Catal. 262, 215 (2009).

O 1s NEXAFS for V_xO_y / SiO₂ , Theory vs. Experiment [1, 2]

• non-monomeric V_xO_y must exist at SBA-15 surface

[1] M. Häveckeret al., Phys. Stat. Solidi (b) 246, 1459 (2009).

[2] M. Cavalleri et al., J. Catal. 262, 215 (2009).

Specific subjects

- NH_x (de)hydrogenation at $V_2O_5(010)$
 - NH₄ formation at OH groups (Bronstedt sites), NH₄ diffusion
 - NH_x binding at oxygen vacancies (Lewis sites)
 - H binding, diffusion,
 - surface OH + OH reaction to form $H_2O + O$, H_2O desorption

- Selective Catalytic reduction (SCR) of NO_x with NH₃
 - reaction schemes with OH groups (Bronstedt sites)
 - reaction schemes near oxygen vacancies (Lewis sites)

<u>NH_x at V₂O₅(010), Introduction</u>

Use of vanadia based catalysts in ammoxidation reactions
 example: selective catalytic reduction (SCR) of NO_x with NH₃

 $4 \text{ NH}_3 + 4 \text{ NO} + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$ $4 \text{ NH}_3 + 2 \text{ NO}_2 + \text{O}_2 \rightarrow 3 \text{ N}_2 + 6 \text{ H}_2\text{O}$

NH_x reactions (dehydrogenation, hydrogenation)

 $NH_x \rightarrow NH_{x-1} + H_{ads}$, x = 1 - 3 $NH_x + H_{ads} \rightarrow NH_{x+1}$

- Adsorption / desorption of NH_x, N, H
- **Diffusion** of NH_x, N, H at surface

<u>NH_x at V₂O₅(010), Theoretical Details</u>

- Substrate clusters for V₂O₅(010)
 - 1- / 2-layer sections, start from exp. geometry
 - hydrogen termination at periphery (embedding)
 - clusters $V_{12}O_{40}H_{20}$, $V_{14}O_{42}H_{14}$, $V_{14}O_{46}H_{22}$, ...
 - adsorbates added (H, NH_x, NO)
 - O removed from O(1-3) sites
- Electronic structure
 - DFT, GGA (RPBE) functional, StoBe
 - equilibrium geometries
 - transition states, barriers (NEB)

<u>NH_x at V₂O₅(010), Adsorption sites, Energetics</u>

Adsorption sites

 Adsorption energies E_{ads} [eV] from total energy differences

	O(1)	O(2)	O(3)	V
Н	-2.64	-2.79	-2.51	
Ν	-1.54	-1.09	-0.49	
NH	-0.95	-0.76	-0.06	
NH ₂	-0.46	-0.73	-0.16	-0.12
NH ₃	-0.11	\rightarrow V	-0.18	-0.26
NH ₄	-3.90	-3.57	-3.27	-3.37

- NH₃ bound quite weakly
- NH₄, H bound quite strongly

<u>NH_x at V₂O₅(010), Adsorption sites, Energetics</u>

 Adsorption (vacancy) sites NH₃, NH₄

 Adsorption energies E_{ads} [eV] from total energy differences vacancy clusters

O(3)_{vac} s-O(1)_{vac} **O(1)**_{vac} **O(2)**_{vac} Н -1.40 -2.60 -2.60 -2.10 -4.10 Ν -2.20 -3.80 -2.70 NH -3.20 -4.90 -4.60 -3.60 -2.20 -3.90 -2.80 NH₂ -2.90 NH₃ -0.90 \rightarrow s-O(1)_{vac} -0.30 -1.20 NH₄ -3.30 -2.80 -3.30 -2.80

Binding stronger near O vacancy

NH₃ bound near sub-surface s-O(1)_{vac}

V₂O₅(010), sub-surface oxygen vacancy

• Vacancy exchange

• **Diffusion** process

oxygen :

s-O(1) → O(2)

O vacancies :

$$O(2)_{vac} \rightarrow s-O(1)_{vac}$$

- s-O(1)_{vac} more stable than O(2)_{vac}
- small diffusion barrier, 0.1 eV
- importance for reactions ?

<u>NH_x at V₂O₅(010), Hydrogen diffusion</u>

- Reactant diffusion at surface important for reaction, example hydrogen
- Diffusion paths, barriers from nudged elastic band (NEB) calculations
- H hops between O sites, OH "diffusion"

<u>NH_x at V₂O₅(010), Hydrogen diffusion</u>

- Reactant diffusion at surface important for reaction, example hydrogen
- Diffusion paths, barriers from nudged elastic band (NEB) calculations
- H hops between O sites, OH "diffusion"

Low barriers : O(1) / O(1) : 0.2 / 0.4 eV O(2) / O(2) : 0.8 eV

<u>NH_x at V₂O₅(010), Hydrogen diffusion</u>

- Reactant diffusion at surface important for reaction, example hydrogen
- Diffusion paths, barriers from nudged elastic band (NEB) calculations
- H hops between O sites, OH "diffusion"

Mobile oxygen facilitates O-H bond breaking / making

barrier: 0.2 eV

<u>NH_x at V₂O₅(010), Hydrogen reaction</u>

- Hydrogen diffusion at surface may lead to adjacent surface OH
- Reaction of surface OH : $V=OH + V=OH \rightarrow V-H_2O + V=O$ Surface H_2O formed (barrier = 0.3 eV)
- Surface H₂O weakly bound (0.4 eV) → easy desorption oxygen vacancy filled by gas phase O₂

<u>NH_x at V₂O₅(010), Hydrogen reaction</u>

- Hydrogen diffusion at surface may lead to adjacent surface OH
- Reaction of surface OH : $V=OH + V=OH \rightarrow V-H_2O + V=O$ Surface H_2O formed (barrier = 0.3 eV)
- Surface H₂O weakly bound (0.4 eV) → easy desorption oxygen vacancy filled by gas phase O₂

SCR of NO_x with NH₃ at V₂O₅(010)

Use of vanadia based catalysts in ammoxidation reactions
 Selective Catalytic Reduction (SCR) of NO_x with NH₃

 $4 \text{ NH}_3 + 4 \text{ NO} + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$ $4 \text{ NH}_3 + 2 \text{ NO}_2 + \text{O}_2 \rightarrow 3 \text{ N}_2 + 6 \text{ H}_2\text{O}$

- **Reaction** schemes near **OH** groups (**Bronstedt** sites) [1]
- Reaction schemes near oxygen vacancies (Lewis sites) [1]
- Initial testing steps, conclusive results → Schmöckwitz 2011

SCR of NO_x with NH₃ at $V_2O_5(010)$

 $4 \text{ NH}_3 + 2 \text{ NO}_2 + \text{ O}_2 \rightarrow 3 \text{ N}_2 + 6 \text{ H}_2\text{O}$

Scheme 1: NH_3 adsorbs near OH group, NH_4^+ formation [1]

- 1: $V=OH + NH_3 + NO \rightarrow V=O-NH_4^+ + NO$
- 2: $V=O-NH_4^+ + NO \rightarrow V=O-NH_4^+-NO$
- 3: $V=O-NH_4^+-NO \rightarrow V=OH-NH_2NOH$
- 4: $V=OH-NH_2NOH \rightarrow 2 * V=OH-NH_2NO$
- 5: 2 * V=OH-NH₂NO \rightarrow V=OH + V=OH + N₂ + H₂O

SCR of NO_x with NH₃ at $V_2O_5(010)$

 $4 \text{ NH}_3 + 2 \text{ NO}_2 + \text{ O}_2 \rightarrow 3 \text{ N}_2 + 6 \text{ H}_2\text{O}$

Scheme 2: NH₃ adsorbs near O(1) vacancy [1] (= reduced metal center, Lewis site)

- 1a: V + NH₃ +NO \rightarrow V-NH₃ + NO
- 2a: V-NH₃ + NO \rightarrow V-NH₃-NO
- 3a: V-NH₃-NO \rightarrow V=O-NH₂NH
- 1b: V + NH₃ + NO \rightarrow V-NO + NH₃
- 2b: V-NO + $NH_3 \rightarrow V-NO-NH_3$
- 3b: V-NO-NH₃ \rightarrow V=O-NH₂NH
- 4: $V=O-NH_2NH \rightarrow V + V=OH + N_2 + H_2O$

[1] S. Soyer, A. Uzun, S. Senkan, and I. Onal, Catal. Today 118 (2006) 268.

Other subjects

- MoO₃(010) [1] (MoS₂ oxidation)
 - sulfidation vs. sulfur adsorption
 - importance of hydrogen
- Molecular vs. dissociative CO and NO adsorption at Mo₂C(0001) [2])
 - preferred adsorption, sites and energetics

