Direkt zum InhaltDirekt zur SucheDirekt zur Navigation
▼ Zielgruppen ▼
 

Humboldt-Universität zu Berlin - Mathematisch-Naturwissen­schaft­liche Fakultät - Theoretische Bioanorganische Chemie

Publications 2005 - 2012

Original scientific papers and reviews:

2012:

33) Bertini L, Bruschi M, Romaniello M, Zampella G, Tiberti M, Barbieri V, Greco C, La Mendola D, Bonomo RP, Fantucci P, De Gioia L (2012) Copper coordination to the putative cell binding site of angiogenin: a DFT investigation. Theoretical Chemistry Accounts, 131:1186.

32) Sacco E, Farina M, Greco C, Lamperti S, Busti S, De Gioia L, Alberghina L, Liberati D, Vanoni L (2012) Regulation of hSos1 activity is a system-level property generated by its multi-domain structure, Biotechnology Advances, 30:154-168.

 

2011:

31) Greco C, Bruschi M, Fantucci P, Ryde U, De Gioia L (2011) Probing the Effects of One-Electron Reduction and Protonation on the Electronic Properties of the Fe-S Clusters in the Active-Ready Form of [FeFe]-Hydrogenases. A QM/MM Investigation, Chemphyschem, 12:3376-82.

30) Greco C, De Gioia L (2011) A Theoretical Study on the Enhancement of Functionally Relevant Electron Transfers in Biomimetic Models of [FeFe]-Hydrogenases, Inorganic Chemistry, 50:6987-6995.

29) Greco C, Bruschi M, Fantucci P, Ryde U, De Gioia L (2011) Mechanistic and physiological implications of the interplay among iron-sulfur clusters in [FeFe]-hydrogenases. A QM/MM perspective, Journal of the American Chemical Society, 133:18742-18749.

28) Yu L, Greco C, Bruschi M, Ryde U,De Gioia L, Reiher M (2011) Targeting Intermediates of [FeFe]-Hydrogenase by CO and CN Vibrational Signatures. Inorganic Chemistry, 50:3888-3890.

27)  Baffert C, Bertini L, Lautier T, Greco C, Sybirna K, Ezanno P, Etienne E, Soucaille P, Bertrand P, Bottin H, Meynial-Salles I, De Gioia L, Léger C (2011) CO disrupts the reduced H-cluster of FeFe hydrogenase. A combined DFT and PFV study. Journal of the American Chemical Society, 133:2096-2099.

26) Greco C, Silakov A, Bruschi M, Ryde U, De Gioia L, Lubitz W (2011) Magnetic properties of [FeFe]-hydrogenases: a theoretical investigation based on extended QM and QM/MM models of the H-cluster and its surroundings. European Journal of Inorganic Chemistry, p. 1043-1049.

25) Greco C, Bruschi M, Fantucci P, Ryde U, De Gioia L (2011) Isocyanide in biochemistry? A theoretical investigation on the electronic effects and energetics of  cyanide ligand protonation in [FeFe]-hydrogenases. Chemistry, 17:1954-1963.

24) Greco C, Fantucci P, Ryde U, De Gioia L. (2011) Fast Generation of Broken Symmetry States in a Large System including Multiple Iron–Sulfur Assemblies: Investigation of QM/MM Energies, Clusters Charges and Spin Populations. International Journal of Quantum Chemistry, 111:3949-3960.

 

2010:

23) Bruschi M, Greco C, Bertini L, Fantucci P, Ryde U, De Gioia L. (2010) Functionally relevant interplay between the Fe4S4 cluster and CN– ligands in the active site of [FeFe]-hydrogenases.  Journal of the American Chemical Society, 132:4992-4993.

22) Greco C, Fantucci P, De Gioia L, Suarez-Bertoa R, Bruschi M, Talarmin J, Schollhammer P. (2010) Electrocatalytic dihydrogen evolution mechanism of [Fe2(CO)4(k2- Ph2PCH2CH2PPh2)(mu-S(CH2)3S)] and related models of the [FeFe]-hydrogenase active site: a DFT investigation. Dalton Transactions, 39:7320-7329.

21) Bertini L. Greco C. Bruschi M. Fantucci P. De Gioia L. (2010) CO affinity and bonding properties of [FeFe] hydrogenase active site models. A DFT study. Organometallics, 29:2013-2025.

20) Ryde U, Greco C, De Gioia L. (2010) Quantum refinement of [FeFe] hydrogenase indicates a dithiomethylamine ligand. Journal of the American Chemical Society, 132:4512-4513.

 

2009:

19) Joly L, Antoine R, Albrieux F, Ballivian R, Broyer M, Chirot F, Lemoine J, Dugourd P, Greco C, Mitric R, Bonacic-Koutecky V (2009)  Optical and structural properties of copper-oxytocin dications in the gas phase. The Journal of Physical Chemistry B, 113:11293-11300.

18) Bertini L, Greco C, De Gioia L, Fantucci P. (2009) DFT/TDDFT exploration of the potential energy surfaces of the ground state and excited states of Fe2(S2C3H6)(CO)6, a simple functional model of the [FeFe] hydrogenase active site. The Journal of Physical Chemistry A, 113:5657-5670.

17) Greco C, Bruschi M, Fantucci P. De Gioia L. (2009) Relation between coordination geometry and stereoelectronic properties in DFT models of the CO-inhibited [FeFe]-hydrogenase cofactor. Journal of Organometallic Chemistry, 694:2846-2853.

16) Bruschi M, Zampella G, Greco C, Bertini L. Fantucci P., De Gioia L. (2009) Hydrogenases: Theoretical Investigations Towards Bioinspired H2 Production and Activation. In: 'Computational Inorganic and Bioinorganic Chemistry'; Solomon, E. I.; King, R. B.; Scott, R. A., Eds., The Encyclopedia of Inorganic Chemistry, John Wiley & Sons, Chichester, UK.

15) Bruschi M, Greco C, Kaukonen M, Fantucci P, Ryde U., De Gioia L. (2009) Influence of the [2Fe]H subcluster environment on the properties of key intermediates in the catalytic cycle of [FeFe] hydrogenases. Hints for the rational design of synthetic catalysts; Angewandte Chemie Int. Ed., 48:3503-3506.

 

2008:

14) Bruschi M, Greco C, Fantucci P, De Gioia L. (2008) Structural and Electronic Properties of the [FeFe] hydrogenase H-cluster in Different Redox and Protonation States. A DFT investigation; Inorganic Chemistry, 47:6056-6071.

13) Bruschi M, Greco C, Fantucci P, Ryde U, De Gioia L. (2008) A DFT investigation on structural and redox properties of a synthetic Fe6S6 assembly closely related to the [FeFe]-hydrogenases active site; Comptes Rendus Chimie, 11:834-841.

 

2007:

12) Greco C. A DFT and QM/MM Investigation on Models Related to the [FeFe]-Hydrogenase Active Site. (2007) - PhD Thesis.

11) Greco C, Bruschi M, Heimdal J, Fantucci P, De Gioia L, Ryde U. (2007) Structural Insights into the Active–Ready Form of [FeFe]-Hydrogenase and Mechanistic Details of its Inhibition by Carbon Monoxide. Inorganic Chemistry, 46:7256-7258.

10) Greco C, Bruschi M, De Gioia L, Ryde U. (2007) A QM/MM investigation of the activation and catalytic mechanism of Fe-only hydrogenases. Inorganic Chemistry, 46:5911-5921.

9) Bertini L, Bruschi M, De Gioia L, Fantucci P, Greco C, Zampella G (2007) Quantum chemical investigations of reaction paths of metalloenzymes and biomimetic models – The hydrogenase example Top. Curr. Chem. 268:1-46.

8) Greco C, Bruschi M, Fantucci P., De Gioia L. (2007) Influence of a large sigma-donor ligand on structural and catalytic properties of di-iron compounds related to the active site of Fe-hydrogenase. A DFT investigation. European Journal of Inorganic Chemistry, 1835-1843.

7) Greco C, Zampella G, Bertini L, Bruschi M, Fantucci P, De Gioia L. (2007) Insights into the mechanism of electrocatalytic hydrogen evolution mediated by Fe2(S2C3H6)(CO)6: the simplest functional model of the Fe-hydrogenase active site. Inorganic Chemistry 46:108-116.

6) Schneider CJ, Zampella G, Greco C, Pecoraro VL, De Gioia L. (2007) Mechanistic analysis of nucleophilic substrates oxidation by functional models of Vanadium-dependent Haloperoxidases: a density functional theory study. European Journal of Inorganic Chemistry, 515-523.

5) Briani F, Del Favero M, Capizzuto R, Consonni C, Zangrossi S, Greco C, De Gioia L, Tortora P, Deho G.  (2007) Genetic analysis of polynucleotide phosphorylase structure and functions. Biochimie, 89:145-157.

 

2006:

4) Bertini L, Greco C, De Gioia L, Fantucci P. (2006) Time-dependent density functional theory study of Fe2(CO)9 low-lying electronic excited states. Journal of Physical Chemistry A, 110:12900-12907.

3) Zampella G, Greco C, Fantucci P, De Gioia L. (2006) Proton reduction and dihydrogen oxidation on models of the [2Fe] H cluster of [Fe] hydrogenases. A density functional theory investigation.  Inorganic Chemistry, 45:4109-4118.

 

2005:

2) Greco C, Fantucci P, De Gioia L. (2005) In silico functional characterization of a double histone fold domain from the Heliothis zea virus 1. BMC Bioinformatics 6(Suppl.4):S15.

1) Greco C, Sacco E, Vanoni M, De Gioia L. (2005) Identification and in silico analysis of a new group of double-histone fold-containing proteins. Journal of Molecular Modeling 12:76-84.