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is an eigenvalue equation with the spin orbitals as eigenfunctions and the
energy of the spin orbitals as eigenvalues. The exact solutions to this integro-
differential equation correspond to the “exact” Hartree-Fock spin orbitals.
In practice it is only possible to solve this equation exactly (i.e., as an integro-
differential equation) for atoms. One normally, instead, introduces a set of
basis functions for expansion of the spin orbitals and solves a set of matrix
equations, as will be described subsequently. Only as the basis set approaches
completeness, i.e., as one approaches the Hartree-Fock limit, will the spin
orbitals that one obtains approach the exact Hartree-Fock spin orbitals.
While (3.22) is written as a linear eigenvalue equation, it might best be
described as a pseudo-eigenvalue equation since the Fock operator has a
functional dependence, through the coulomb and exchange operators, on the
solutions {y,! of the pseudo-eigenvalue equation. Thus the Hartree-Fock

equations are really nonlinear equations and will need to be solved by
iterative procedures.

Exercise 3.1 Show that the general matrix element of the Fock operator
has the form

fl> = <ilhlj> + ; Lif|bb] — [ib|bi] = <ilh|j> + ; <ib||jby (3.23)
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32 DERIVATION OF THE HARTREE-FOCK EQUATIONS

In this section we derive the Hartree-Fock equations in their general spin
orbital form, i.e., we obtain the eigenvalue equation (3.17) by minimizing
the energy expression for a single Slater determinant. The derivation makes
ho assumptions about the spin orbitals. Later, we will specialize to restricted
and unrestricted spin orbitals and introduce a basis set, in order to generate
algebraic equations (matrix equations) that can be conveniently solved on a
computer. In the meantime, we are concerned only with the derivation of
the general integro-differential equations (the Hartree-Fock eigenvalue
equations), the nature of these equations, and the nature of their formal
solution. To derive the equations we will use the general and useful technique

of functional variation,
3.2.1 Functional Variation

Given any trial function ®, the expectation value E[®] of the Hamiltonian
operator # is a number given by

E[®] = (B|#|d) (3.24)

We say that E[(f)] is a functional of @ since its value depends on the form of
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a function, i.e., the function @, rather than any single independent variable.
Suppose we vary @ by an arbitrarily small amount, by changing the para-
meters upon which ® depends, for example. That is,

O D+ 5 (3.25)
The energy then becomes
E[® + 58] = (B + o0|#|D + 5D)
= E[®] + {<6D|#] D> + (D|#|5D)} +
— E[®] +6E+ -~ (3.26)

where §E, which is called the first variation in E, includes all terms that are
linear, i.e., first-order, in the variation 5®. Notice that we can treat :o)z: just
like a differential operator, ie., 8(®#|B) = (DA |®) + (DA |9D). In
the variation method, we are looking for that @ for which E[ @] is a minimum.
In other words, we wish to find that ® for which the first variation in E[®]

is zero, i.e.,

SE=0 (3.27)

This condition only ensures that E is stationary with respect to any variation
in ®. Normally, however, the stationary point will also be a minimum.

We will illustrate the variational technique by rederiving the matrix
eigenvalue equation of the linear variational problem given in Subsection
1.3.2. Given a linear variational trial wave function,

~ ><
oy = 3, a|¥ (3.28)

i=1
we want to minimize the energy

E=(D|#|D) =Y cFel¥,
ij

#1) (3.29)

subject to the constraint that the trial wave function remains normalized,
ie.,
BBy — 1 =Y cte¥i| ¥ —1=0 (3.30)
ij

Using Lagrange’s method of undetermined multipliers described in Chapter
1, we therefore minimize, with respect to the coefficients ¢;, the following

functional

& = (B|#|®) — E(D|D) — 1)

I

Y cke (V| H# P> — E M cFe (Y|P — 1 (3.31)
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where E is the Lagrange multiplier. Therefore, we set the first variation in
& equal to zero.

8F =Y dcte (¥, #
ij
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Since E is real (¢ is real), after collecting terms and interchanging indices,
we get :
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where H;; = Aﬁ_&\;%&v. The linear expansion functions ?&.v are not as-
sumed to be orthonormal, but are assumed to overlap according to

SR DERT (3.34)

.mEom ocf is arbitrary (¢f and ¢; are both independent variables), the quantity
in square brackets in (3.33) must be zero, or

> Hycy=E Y Syc;
J 7
Hc = ESc (3.35)

mmmmdmw:% the same result (with S = 1 and real coefficients) was previously
obtained in Subsection 1.3.2. The functional variation technique thus leads
8.5@ same result as is obtained by differentiating with respect to the coef-
ficients. Functional variation is a more general technique, however, and
we now proceed to derive the Hartree-Fock equations using it. ,

3.2.2 Minimization of the Energy of a Single Determinant

Given the single determinant |Wo> =|xy72 " Zaks» '~ Xn»» the energy
Eq=(Wo|#|¥,) is a functional of the spin orbitals M\L To derive the
Iﬁ.:oo-woﬁuw equations we need to minimize E[{y,] ] with respect to the
spin oﬂ_@:m_mu subject to the constraint that the %5(01&85 remain ortho-
normal,

[ax, 7201 = [a] b] = 6,4 (3.36)
That is, the constraints are of the form
[a]b] =04 =10 (3.37)
We therefore consider the functional #[{y,}] of the spin orbitals
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