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Exercise 2.30 Show that
<TZ'(91,T0> = Z <ifh|j><‘1’olalarafa,-!‘f’o>
ij

= (r|h|a)

by moving a and a, to the right.

Exercise 2.31 Show that

N
<‘l’;\(92]‘{’0> = Z <rb| ]ab)
b
Hint: first show that
<\Ilo'a;ara;a}alak|lpo> = 5rj5al<‘POla?akl\PO> T 5rj5ak<‘{!0’agal’lp0>

o 5ri5ak<\PO|a;alllP0> = 5ri5al<lP0'a;[ak{\P0>
then refer to Exercise 2.27.

2.5 SPIN-ADAPTED CONFIGURATIONS

We have described the spin of a single electron by the two spin functions
w(w) =« and f(w) = B. In this section we will discuss spin in more detail
and consider the spin states of many-electron systems. We will describe
restricted Slater determinants that are formed from spin orbitals whose
spatial parts are restricted to be the same for o and f spins (i.e, {y;} =
Wio, ¥:f3}). Restricted determinants, except in special cases, are not eigen-
functions of the total electron spin operator. However, by taking appropriate
linear combinations of such determinants we can form spin-adapted con-
figurations, which are proper eigenfunctions. Finally, we will describe un-
restricted determinants, which are formed from spin orbitals that have
different spatial parts for different spins (i.e., {y,} = {ea, Y2B)).

2.5.1 Spin Operators

The spin angular momentum of a particle is a vector operator 3,
§=s,0+ s8]+ 5,k (2.240)

where 7, j, and k are unit vectors along the x, y, and z directions. The squared
magnitude of § is a scalar operator

=35 "§=s+s2+s? (2.241)




The components of the spin angular momentum satisfy the commutation
relations

[Sx> 85] = ISz [sys 5.] = i, [s., Sx] = is, (2.242)

A : : . be
The complete set of states describing the spin on a m_smﬁo. GM:,:Qa oMMoE
taken to be the simultaneous eigenfunctions of s* and a single comp

of 3, usually chosen to be s,

s2[s, mgy = s(s + 1)s, my» (2.243a)
S, Mgy (2.243Db)

zm mu 3sz = Zau

where s is a quantum number describing the ﬁoﬁ.m_ mvw: and hgmnom wmﬁ_ﬁwwww:w
number describing the z component ow the spin. The @o“ e
are 0,5, 1,3, ... and m has 2s + H.wo%&_w values —s, M ,MEEmu . oo:hv_ma
s — 1, 5. An electron is a particle with s = 3 and m; = £3.

set of states describing the spin of the electron are

P (2.244a)

oj—

i
5

b -

D=

. . 2
These spin states are eigenfunctions of s* and s,

Sy =3P, SR =3B (2.2452)
s =4y, s B> = —3IB (2.245b)
but are not eigenfunctions of s, and s,,
sy =4[BY, B> =3|e> (2.245¢)
: : .245d
sl =318, slB>= =3 (2.245d)

i /eni ith the
Instead of using s, and s,, it is often more convenient :m émﬂw with
“step-up” and “step-down” ladder operators, s.. and s_, defined as

S, =8, +Is, (2.246a)
S_ =S8, — IS (2.246b)
S =Sk )
These operators increase or decrease the value of m, by one,
s+|oy =0, s.|B> = |oe (2.247a)
s_|ley =8>, s_|B>=0 (2.247b)

2 2
Using the commutation relations (2.242), the expression (2.241) for s~ can
be rewritten as

(2.248a)
(2.248b)

%)
2 =5,5_— 5.+

2
MN“M\M++MN+MN

et

mxmnomman.mn3@320@@3:85 AN.NA&MEUOSEQNA@.
Exercise 2.33 Find the 2 x 2 matrix representations of s%, 5., s, , and s _
in the basis [o), |B>. Verify the identities analogous to (2.248a,b) for these
matrix representations.

Exercise 2.34 Using the commuta
[s2,s,] = 0.

:o:n@_w:o:wR.N#Nv,wwoiﬁgﬁ

In a many-electron system, the total spin angular momentum operator
is simply the vector sum of the spin vectors of each of the electrons

N
S =Y 5 (2.249)
i=1

From this relation it is evident that the components of the total spin and

the ladder operators are analogous sums of one-electron operators

N

=3 sy I=x,y,z (2.250a)
i=1
i
Fr=Y s.(i) (2.250b)
i=1
The total squared-magnitude of the Spin,
i A N N
Sr=F - F=3 Y 36) ()
i=1 j=1
=SS —F, +9?
=4 L+ S, + F? (2.251)

is the sum of one-electron operators (the diagonal terms i = j) plus the
sum of two-electron operators (the cross-terms i #J).

In the usual nonrelativistic treatment, such as considered in this book,

the Hamiltonian does not contain any spin coordinates and hence both
%2 and . commute with the Hamiltonian,

[#. 5] =0=[#, 9] (2.252)

Oosmo@:m::vﬁﬂ:@mxmg eigenfunctions of the Hamiltonian are also eigen-
functions of the two spin otowmﬁo?

Il

FD) = (S + 1)|D) (2.253a)

|0y = M|D) (2.253b)
where S and My are the spin quantum numbers describing the total spin

and its z component of an N-electron state |@). States with § = 0,4, 1,3, ...
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have multiplicity (25 + 1) =1, 2,3,4,...and are called singlets, doublets,
triplets, quartets, etc. Approximate solutions of the Schrodinger equation
are not necessarily pure spin states. However, it is often convenient to con-
strain approximate wave functions to be pure singlets, doublets, triplets, etc.

Any single determinant is an eigenfunction of ¥, (see Exercise 2.37).

In particular
y)z'Xin L = %(Na o Nﬁ)'Xin 200 p 1= Ms‘Xin - S (2.254)

where N* is the number of spin orbitals with a spin and N” is the number of
spin orbitals with § spin. However, single determinants are not necessarily
eigenfunctions of & 2 As we will discuss in the next subsection, by combining
a small number of single determinants it is possible to form spin-adapted

configurations that are correct eigenfunctions of &% 2

Exercise 2.35 Consider an operator .o/ that commutes with the Hamil-
tonian. Suppose ICD> is an eigenfunction of #’ with eigenvalue E. Show that
o/|®) is also an eigenfunction of #° with eigenvalue E. Thus if | is
(energetically) nondegenerate, then .o/ \(I>> is at most a constant multiple of
@) (i #|®) = a|®») and hence |®) is an eigenfunction of /. In case of

degeneracies, we can always construct appropriate linear combinations of
the degenerate eigenfunctions of # that are also eigenfunctions of 7.

Exercise 2.36 Given two nondegenerate eigenfunctions of a hermi-
tian operator ./ that commutes with 7, i.e., W) = a|¥y), & W, =
a,|¥,), a, # a,, show that (W,| ' [¥,) = 0. Thus the matrix element of the
Hamiltonian between, say, singlet and triplet spin-adapted configurations
is zero.

Exercise 2.37 Prove Eq. (2.254). Hint: Use expansion (2.115) for a Slater
determinant and note that ., since it is invariant to any permutation of the
electron labels, commutes with 2.

2.5.2 Restricted Determinants and Spin-Adapted Configurations

As we have seen in Subsection 2.2.1, given a set of K orthonormal spatial

orbitals {y;|i=1,2,..., K} we can form a set of 2K spin orbitals

{li=12,..., 2K} by multiplying each spatial orbital by either the o or
B spin function

L2i-1(X) = W i(ryo(w)

Z£2i(x) = Pi(r)B(w)

Such spin orbitals are called restricted spin orbitals, and determinants formed

from them are restricted determinants. In such a determinant a given spatial

=120, K (2.255)

}

5> = [V ¥, % U8 AT

orbital ¥; can be occupied
by two electrons (one with
venient to classify the tyj
number of spatial orbitals
each spatial orbital is doul
(see Fig. 2.11). An open she
electron. One refers to de
contain.
All the electron spins a
not surprising that a closed
an eigenfunction of %2 wit

yzlwil/;iwj%j
as shown in Exercise 2.38.
minant is the Hartree-Fock

‘qj0> = ‘l//1';1> =

wherg we have expanded o
fun'ctlon Is just the singlet sp
excited state [P32) = [22) is

Exercise 2.38 Prove Ec
2) as a result of Eq. (2.254) i
expansion (2.115) for the det
pgrmutation operator, 4) s._
minant vanishes because it h




