Kapitel 2

2. MO-Theorie mehratomiger Moleküle

- 2.1. H₂O-Molekül symmetrieäquivalente und symmetrieadaptierte AO und das "Aufblocken" des Eigenwertproblems (Lit. 3, S. 103-111) MO-Schema des H₂O-Moleküls
- 2.2. Kanonische MO und lokaliserte MO, unitäre Transformation
- 2.3. Hybridorbitale, Bildung symmetrieadaptierter Linearkombinationen
- [2.4. Walsh-Diagramm]

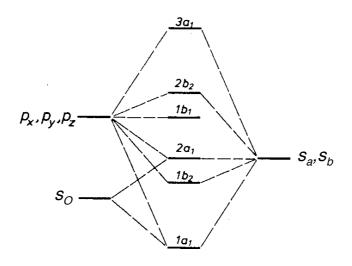
[Computerübung: Delokalisierte (symmetrieadaptierte) und lokalisierte Orbitale des Wassermoleküls]

© Joachim Sauer • "Chemische Bindung", WS 2009-10 Humboldt-Universität • Kapitel 2 • Folie 1

Valenz-MO des H₂O

$$\begin{split} \psi_i &= \underline{\chi} \cdot \underline{c}_i = \sum_{j=1}^8 \chi_j \cdot c_{ji} \\ \psi_i &= c_{ai} s_1 + c_{bi} s_2 + c_{Oi} s_O + c_{xi} p_x + c_{yi} p_y + c_{zi} p_z = \begin{pmatrix} s_a & s_b & s_O & p_x & p_y & p_z \end{pmatrix} \begin{pmatrix} c_{ai} \\ c_{bi} \\ c_{Oi} \\ c_{xi} \\ c_{yi} \\ c_{zi} \end{pmatrix} \end{split}$$

MO-Schema - H₂O



© Joachim Sauer • "Chemische Bindung", WS 2009-10 Humboldt-Universität • Kapitel 2 • Folie 3

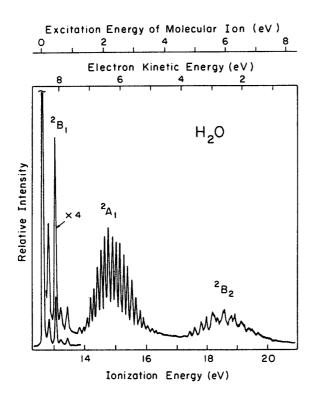
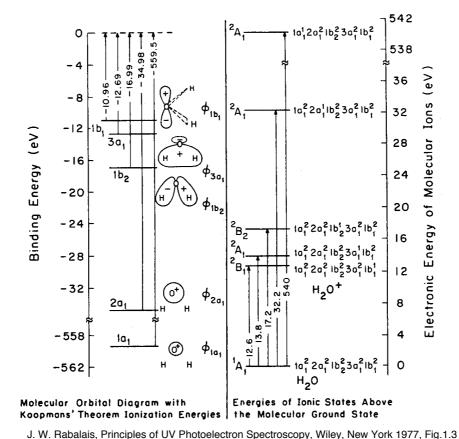


Fig. 1.2. He I photoelectron spectrum of water.

Intensivste Linie jeder Bande ("vertikale" Ionisierung): 12,6; 14,8 und 18,2 eV

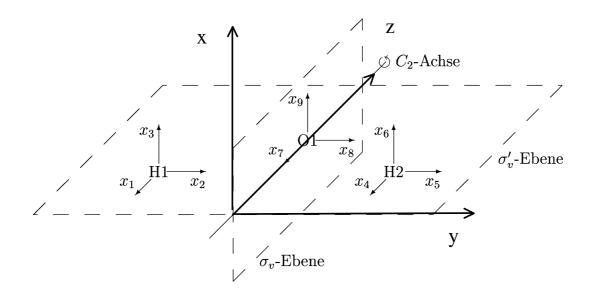
Berechnung nach KOOPMANS Theorem (Hartree-Fock/TZP Basis) 13,7; 15,7 und 19,5 eV

J. W. Rabalais, Principles of UV Photoelectron Spectroscopy, Wiley, New York 1977, S.9 - 17



7 1 132 33

@ Joachim Sauer • "Chemische Bindung", WS 2009-10 Humboldt-Universität • Kapitel 2 • Folie 5



Definitionen

Symmetrieoperation (Decktransformation) - SO

Operation (Transformation), die jeden Punkt eines Objektes in sich selbst oder in einen äquivalenten Punkt überführen.

Objekt vor und nach der Operation ist ununterscheidbar.

Symmetrieelement - SE

Geometrisches Gebilde (Punkt, Linie, Ebene), bezüglich dessen eine Symmetrieoperation ausgeführt wird

Punkte, die zu einem SE gehören, bleiben bei der SO unverändert.

© Joachim Sauer • "Chemische Bindung", WS 2009-10 Humboldt-Universität • Kapitel 2 • Folie 7

Symmetrieäquivalente u. symmetrieadaptierte Orbitale

Symmetrieäquivalent heißt eine Menge von Orbitalen, die durch die Symmetrieoperationen (SO) der Punktgruppe eines Moleküls ineinander überführt werden.

Die s-Orbitale der beiden H-Atome sind symmetrieäquivalent.

Aus symmetrieäquivalenten Orbitalen lassen sich symmetrieadaptierte Orbitale linear kombinieren. Das geschieht am einfachsten durch Anwendung von Projektionsoperatoren auf die entsprechenden Unterräume.

$$S_{+} = \frac{1}{2} (S_a + S_b); S_{-} = \frac{1}{2} (S_a - S_b)$$

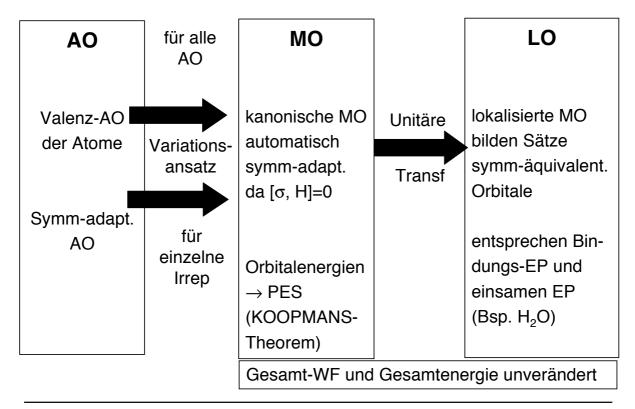
Die Atomorbitale des O-Atoms sind im H₂O-Molekül bereits symmetrieadaptiert (das O-Atom liegt im Schnittpunkt aller Symmetrieelemente)

Symmetrietyp	Symmetrieadaptierte Orbitale	Dimension des Unterraumes	
a ₁	$s_0, p_z, {}^1/_2(s_a + s_b)$	3	
a ₂	-	0	
b ₁	p _x	1	
b ₂	p_y , $^{1}/_{2}(s_a - s_b)$	2	

Folgerung: Nur die AO eines Symmetrietyps "mischen" miteinander bei der Bestimmung der Molekülorbitale, d.h. das p_x -Orbital des O-Atoms bleibt im Molekül unverändert.

© Joachim Sauer • "Chemische Bindung", WS 2009-10 Humboldt-Universität • Kapitel 2 • Folie 9

LCAO-Ansatz und Symmetrie



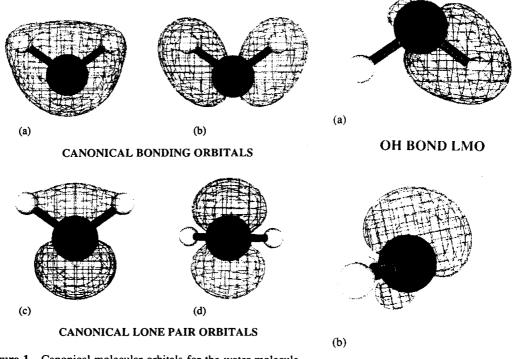


Figure 1 Canonical molecular orbitals for the water molecule

LONE PAIR LMO

 $^{\odot}$ Joachim Sauer $\, \cdot \,$ "Chemische Bindung", WS 2009-10 Humboldt-Universität $\, \cdot \,$ Kapitel 2 $\, \cdot \,$ Folie 11

Normalized equivalent hybrid orbitals formed from primitive 2s and 2p atomic orbitals

Hybrid designation	n	θ	Normalized hybrid	Usual name	n(n+1)
sp ³	3	109°28′	$\frac{1}{2}(\phi_{2s}+\sqrt{3}\phi_{2p_j})$	Tetrahedral	12
sp ²	2	120°	$3^{-1/2}(\phi_{2s}+\sqrt{2}\phi_{2p_1})$	Trigonal	6
sp	1	180°	$2^{-1/2}(\phi_{2s}+\phi_{2p_i})$	Digonal	2
sp"	n	$\sec^{-1}(-n)$	$(n+1)^{-1/2}(\phi_{2s}+\sqrt{n}\phi_{2p_i})$		n(n+1)
sp*	∞	90°	ϕ_{2p}	2 <i>p</i> AO	