

B2/B6: VxOy (TixOy) in SBA 15:

Synthesis Structure ODH of propane

www.fhi-berlin.mpg.de

1

Who did the work

Reactivity group: A.Trunschke

- G. Tzolova-Müller
- J. Kröhnert
- T. Wolfram
- B. Frank

- G. Weinberg & W. Zhang, A. Klein-Hoffmann
- G. Lorenz & M. Hashagen & D. Brennecke
- F. Girgsdies & E. Kitzelmann
- M. Haevecker

R. Schlögl

• TU: Schomäcker group : A. Dinse, C. Carrero

• FU: K. Dinse Freie Universität

Targets

- Synthesize families of title catalysts in reproducible and large quantities.
- Characterize geometric and electronic structures.
- Share with K. Dinse for in-depth electronic structure analysis by EPR.
- Share with R. Schomäcker for kinetic testing.
- Compare with other systems in C3 ODH.
- Identify generic data for comparison with theory.

sample	% wt V set	% wt V from EDX	% wt V from XRF	BET surface / m²/g (16.2nm2/N ₂	S(micropor e) [m²/g]	XR	D S(micro S(BET)	DFT (equ.) / pore size d ₀	a0 [nm]	wall tickness [nm]
sample	% wt Ti/V set	% wt Ti from EDX / XRF	% wt V from EDX / XRF	BET surface / m²/g (16.2nm2/N ₂)	S(micropor e) [m²/g]	XRD	S(micro)/S(BET)	DFT (equ.) pore size d ₀ [nm]	a0 [nm]	wall tickness [nm]
7495	0/0			978	427	no pea ks	43,7%	7.59	11.22	3.63
7569	3/0	"3.4"/ 3.45		823	316	no pea ks	38,4%	7.31	10.97	3.66
7606	3/0.8	"3.4"/ 3.29	0.98	761	293	no pea ks	38,5%	7.31	10.96	3.65
7620	3/4	3.4	3.9	629	192	no pea ks	30,5%	7.31	10.94	3.63
7622	15/0	"7.5"/ 8.83		809	292	no pea ks	36,1%	7.03	10.96	3.93
7624	15/4	7.5	3.6	319	79	no pea ks	24,8%	7.03	10.84	3.81
7841	20	13,0	13.66	200	39	Pea 22.	ak "19.5% 6° "	Macro poren		

Structural integrity

Textural integrity

V on Ti localizes substantially on TiCrystallization of oxides easily detected (not shown)

C Department of Inorganic Chemistry Fritz-Haber-Institut der MPG

OH groups and acid-base chemistry

V reacts with all OH groups available (micropores!)

Ti adds more OH groups to the system

Metal loading creates acidity. Ti-bonded OH weakly acidic. V-bonded OH strongly acidic.

Structure and the metal species

Titania forms tetrahedral distorted species at all loadings (NEXAFS) Vanadia oligomerizes with increasing loading to a mixture of species (NEXAFS, K.Hermann) The combination of V+Ti suppresses the structural dynamics of V and leads to mixed oligomers.

Structure of the metal species

Hadjiivanov, Applied Catalysis A: General 188 (1999)355-360

SBA-15, #7495, 0.044 mbar 8Ti/SBA-15, #7622, 0.044 mbar 4V/8Ti/SBA-15, #7624, 0.040 mbar 4V/3Ti/SBA-15, #7620, 0.041 mbar 0.8V/3Ti/SBA-15, #7606, 0.047 mbar 4V/SBA-15, #7815, 0.042 mbar

5, #7624, 0.040 mbar 5, #7620, 0.041 mbar 15, #7606, 0.047 mbar #7815, 0.042 mbar

Catalysis

www.fhi-berlin.mpg.de

10

Selectivity-conversion trajectories for 2%VOx/SBA15 and 13 VOx/SBA15 catalyst. $C_3H_8/O_2/N_2 = 17.2/8.6/34.3$. Catalysts mass = 300 and 30 mg Flows = 20- 100 cc/min

Multiple reaction pathways: "simple" reaction network?

Different loadings (differing species distributions) exhibit in the details of their conversion-selectivity profiles substantial differences:

mulitiple sites in action

The "noise" in some catalytic data arises from the species interconversion (structural dynamics) with time constants of the catalysis experiments.

Department of Inorganic Chemistry Fritz-Haber-Institut der MPG

Institut für Chemie

Selectivity fixed at 2 % of conversion for VOx/SBA15 catalysts at 460 and 500°C. C3H8/O2/N2 = 17.2/8.6/34.3 Catalyst mass= 30- 300mg. Flows= 20 – 100 ml/min.

Catalysts:VOx/Ti/SBA15

BIG MINSE

"Grading" of catalysts depends much on conditions!

 $C_3H_8/O_2/N_2 = 17.2/8.6/34.3$. Catalysts mass = 300 and 30 mg. Flows = 20- 100 cc/mi

Electronic structure and reactivity

In-situ UV-Vis reveals similar initial electronic structure of the V species:

In feed a differentiation occurs reflecting the presence of the Ti species.

C Department of Inorganic Chemistry Fill Fritz-Haber-Institut der MPG

IIII unicat

Unifying Concepts in Catalysis

Structural dynamics

The catalyst becomes more selective when

The species at 392 nm (larger V-O-V arrays (RAMAN)) disappear; The reducibility (d-d-transitions) remains limited. In NEXAFS spriting of V on Ti is detected, the average oxygen coordination changes.

Reaction rate constants for C3 ODH

18

A reaction network

19 Unifying Concepts in Catalysis

Results and future activities

- V is dynamical.
 - Static diluted and static crystalline are not desired.
 - Rapid dynamics is detrimental.
 - Redox dynamics requires an optimum.
- Multiple active sites for different reactions: kinetic parameters are intermixed.
- Beware of tof!
- Ti (mixed species) suppresses polymeric species and its mobility.

- Gas phase chemistry?
- CO_x chemistry.
- Kinetics of temporal changes.
- Complete Ti/V matrix.
- Create Ce/V matrix.

Department of Inorganic Chemistry Fritz-Haber-Institut der MPG

www.fhi-berlin.mpg.de

IIIIIunicat

Unifying Concepts in Catalysis

Structure of the metal species

Process under severe conditions

